Health IT and Electronic Health Activate your FREE membership today |  Log-in

Community Blog

Sep 17 2015   1:11PM GMT

Unlock the value of unstructured patient data



Posted by: adelvecchio
EHR, EHR data, Patient data, unstructured data

John Smithwick-RoundingWell headshotGuest post by John Smithwick, CEO of RoundingWell

Once upon a time, a visit to the doctor started with, “Tell me where it hurts” and ended with, “Take two of these and call me in the morning.” Getting patients diagnosed correctly and treated appropriately depends on providers gathering both quantitative data, which is typically structured, and qualitative data, which is typically unstructured. When comparing both types of data, it’s more challenging to manage and derive value from unstructured patient data.

Quantifiable, measureable data such as lab results, blood sugar levels and cholesterol are considered structured data. This type of data is objective and can be entered discretely into EHRs via predefined fields. Since the data is structured, software systems are able to understand the meaning of the data, interpret and report on it. Structured data can be put to use by clinicians at the point of care to aid their decision making.

Qualitative data — such as symptoms like pain, discomfort and fatigue — is considered unstructured data. This type of data is subjective to the patient and is often gleaned through conversations based on what the clinician asks and what the patient discloses.

If a patient encounter was like an academic exam, gathering structured data such as vitals would be the fill-in-the-blank portion of the test. Gathering unstructured patient data would be the essay portion. While it might seem like a simple exchange of niceties, these communications provide a lot of information to a clinician, such as whether a patient is experiencing depression, or that she’s experiencing shortness of breath upon standing.

Correct diagnoses and appropriate treatments are dependent on managing both structured and unstructured patient data. Managing structured and unstructured data also greatly influences the outcomes a healthcare organization is able to deliver. As the amount of reimbursements tied to outcomes increases, delivering outcomes becomes more important.
Managing structured data is usually handled well. It’s in the management of unstructured data where problems arise. There are two primary problems with unstructured data.

  • The first problem is process related. Unstructured data is not gathered consistently or systematically. A clinician only knows about symptoms if he asks the patient, which doesn’t always happen, or if the patient discloses the information, which, again, doesn’t always happen. When symptoms are overlooked or patients withhold information, clinicians can’t make the right diagnosis or give the best treatment.
  • The second problem is technical. Unstructured data is most often recorded in EHRs in free text fields or note fields. Data stored in this way is very difficult for software systems to interpret, understand and analyze.

The ballooning amount of data available is another issue. In 2012, worldwide digital healthcare data was estimated to be 500 petabytes. That’s an astounding number, and it’s only growing: the data is expected to reach 25,000 petabytes in 2020. It can be a daunting challenge for healthcare organizations to gain value from this mountain of data. And guess what? Industry consensus is that approximately 80% of all healthcare data is unstructured data.

So, what if technology could not only ensure patients were diagnosed correctly, but also automate the process? Cloud-based care management and patient engagement software are providing new ways for healthcare organizations to unlock the value of unstructured patient data. How? In essence, by creating “structured symptoms” — gathering patient-reported symptoms and discretely capturing them in a way the data can be analyzed.

These platforms systematically assess patients for symptoms and signs that patients might not get asked about by a provider and that they might not self disclose because they don’t think it’s important or they forget to mention it. Care management software then stores patient symptom info in a structured way, allowing this previously unstructured data to be analyzed and made actionable.

For example, consider the use of alerts which signal clinicians that a patient needs attention. Instead of discovering issues at a late stage, after a disease has had time to progress, clinicians are alerted early to leading indicators of a decline in a patient’s health status. In this way, delivery of care becomes less like fighting fires and more like preventing fires.

What’s the bottom line? Whether it’s gathered via care management software, EHR or patient-specific physician insights, all data should be structured and be ready for interpretation and analysis. This is especially critical in value-based models. For any risk-bearing entity, getting this complete picture is absolutely critical to give patients the right treatment at the right time, to improve outcomes and prevent adverse health events.

About John Smithwick:
John Smithwick is the CEO of RoundingWell. He co-founded RoundingWell in 2011 following four years at Nashville’s Healthways, where he led the design effort for its Web-based disease and lifestyle management product offerings. Prior to his work at Healthways, he worked in product management at Microsoft in Redmond, Wash. and in technology strategy consulting with Accenture in Boston, Mass. A graduate of the University of Richmond, he holds a master’s of business administration from the University of Pennsylvania’s Wharton School of Business.

Comment on this Post

Leave a comment:

Forgot Password

No problem! Submit your e-mail address below. We'll send you an e-mail containing your password.

Your password has been sent to: